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Exact solution for the time evolution of network rewiring models
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We consider the rewiring of a bipartite graph using a mixture of random and preferential attachment. The full
mean-field equations for the degree distribution and its generating function are given. The exact solution of
these equations for all finite parameter values at any time is found in terms of standard functions. It is
demonstrated that these solutions are an excellent fit to numerical simulations of the model. We discuss the
relationship between our model and several others in the literature, including examples of urn, backgammon,
and balls-in-boxes models, the Watts and Strogatz rewiring problem, and some models of zero range processes.
Our model is also equivalent to those used in various applications including cultural transmission, family name
and gene frequencies, glasses, and wealth distributions. Finally some Voter models and an example of a
minority game also show features described by our model.
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I. INTRODUCTION

One of the most important classes of complex network
models are those with a constant number of edges which
evolve by rewiring those edges. The classic example of Watts
and Strogatz [1] is of this type and such models are often
studied in their own right [2-7]. Network rewiring is also
related to some multiurn models [8—11] which include what
are termed backgammon or balls-in-boxes models [12] used
for glasses [13,14], simplicial gravity [15], and wealth distri-
butions [16]. Models of the zero range process [17-19] are
also closely linked. Since most practical systems cannot
grow indefinitely networks of constant size have many appli-
cations: the transmission of cultural artifacts such as pottery
designs, dog breed, and baby name popularity [20-25], the
distribution of family names in constant populations [26],
and the diversity of genes [27,28]. Aspects of the Voter
model [29,30], as used to describe the competition between
languages [31], and the popularity of minority game strate-
gies [32] may also be cast in terms of network rewiring.

Analytic results for network models are limited. A typical
approach starts from the master equations for the evolution
of the degree distribution, these are given in a mean-field
approximation in which the quantities are the average values
of many possible realizations. Luckily in most models, and
even in some real-world applications, the results from mean-
field equations often agree extremely well with numerical
simulations of the model.

Despite the simplifications brought by the mean-field ap-
proximation, the equations remain difficult to solve and it is
normal to study the large graph and long time limit, e.g., see
[33,34]. For instance, the finite size and/or time corrections
to growing graphs using linear degree attachment probabili-
ties are complicated and known only as an asymptotic ex-
pansion, for example, see [35,36]. In fact one of the most
tractable examples remains the Erdés-Réyni random graph
which can be seen as the long time limit of the Watts and
Strogatz rewiring model [1].

What we show in this paper is that the mean field equa-
tions for the degree distribution of nongrowing rewiring
models with linear rewiring probabilities can be solved ex-
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actly for any time. This goes beyond the results found in the
literature (typically exact only for infinitely large systems in
equilibrium) and extends the initial work on exact results in
such models at equilibrium [37] and the preliminary non-
equilibrium results of [38].

We start by setting up the model and the mean-field mas-
ter equations for the degree distribution in the next section.
We solve these in terms of the generating function in Sec. III
and from this we consider the degree distribution in Sec. IV
and then its moments in Sec. V. All this is done in terms of
our simple network rewiring model but in Sec. VI we con-
sider the relation between this model and a variety of other
abstract models (with and without explicit networks) and
various real world examples. Finally we summarize our con-
clusions and add some observations on how such preferential
attachment may arise naturally and the scaling properties of
our model.

II. THE MODEL

We will focus on a generic rewiring problem, which we
shall describe in terms of a bipartite graph of E “individual”
vertices, each having one edge fixed to any one of N “arti-
fact” vertices, as shown in Fig. 1. Our naming of the vertices
reflects our previous work and one possible application (cul-
tural transmission) but apart from the names we will keep
our presentation abstract until Sec. VI.

Each individual vertex is always connected to exactly one
edge while the other end of each edge is connected to any
artifact. The network changes by rewiring the artifact end of
these edges and we will focus on the degree distribution of
the artifact vertices at any one time, n(k,f), and its probabil-
ity distribution p(k,t)=n(k,t)/N, where k is the degree of an
artifact vertex.

To make progress we make further simplifying assump-
tions. First we will assume that the population of individuals
is absolutely constant so E is fixed and finite. Almost all
other comparable work uses a large E approximation. We
will also assume that the artifact choices available are fixed
to be N so the average degree of an artifact vertex is (k)
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FIG. 1. (Color online) The bipartite graph has E individual ver-
tices, each with one edge. The other end of the edge is connected to
one of N artifact vertices. If the degree of an artifact vertex is k then
this artifact has been “chosen” by k distinct individuals. At each
time step a single rewiring of the artifact end of one edge occurs.
An individual is chosen (number 3 here) with probability IT; which
gives us the departure artifact (here B). At the same time the arrival
artifact is chosen with probability I1, (here labeled A). After both
choices have been made the rewiring is performed (here individual
3 switches its edge from artifact B to A).

=E/N. An important limit is where we take N to infinity so
(ky—0.

We will then assume that at each time step one edge is
rewired [39]. Continuous time evolution is considered in
Sec. VI A. At each time step [40] we first make two choices
and only then do we change the network.

First an individual is chosen in some stochastic manner.
This individual is attached by one edge to an artifact, the
departure artifact. It is the artifact end of this edge which is
to be changed. Thus we are effectively removing an edge
from the departure artifact chosen with probability [41] Tl.
The edge chosen is going to be rewired and attached to an-
other artifact vertex, the arrival artifact, picked with prob-
ability IT,. Thus the master equation for the degree distribu-
tion in the mean-field approximation is

n(k,t+ 1) —n(k,)) =nlk+ 1,0l z(k+ 1,0)[1 = I, (k + 1,7)]
—n(k,)x(k,0)[1 =T, (k,1)]
—n(k, )1, (k,0)[1 = Tx(k,1)]
+n(k— 1,0 (k- 1,2)
X[1=-Tgxk-1,0] (E=k=0). (1)

For notational simplicity we choose to set n(k)=IIg(k)
=I1,(k)=0 for the unphysical values k=—1 and k=(E+1). In
this way the equation gives the correct behavior at the physi-
cal boundary values of k=0 and k=E.

Note that there is a chance (IIgzIl,) that we will choose
the same artifact vertex for both attachment and removal. As
this produces no change in the network we must ensure that
such events do not contribute to changes in the degree dis-
tribution. This is the role of the factors of (1—1II). Such terms
are not normally found in the master equations for network
rewiring [3,5-9,11]. It is crucial that we do this otherwise we
will not have the correct behavior at the boundaries k=0 and
k=E.
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Such (1-1IT) corrections will often be negligible espe-
cially for large E systems where the probabilities I1(k) for
any individual value of degree k may be tiny [42]. However,
there are important configurations in this model and in re-
lated models where even for large systems in equilibrium
I1(k) are not small for some values of k. This will be dis-
cussed in Sec. VI A after we have obtained the explicit so-
lution.

The master equation (1) is a mean-field approximation for
the evolution through our stochastic dynamics of the average
value of the function n(k). The errors come if

(n(k,0)f(k, 1)) = (nk,0))(f(k,1)) # O, (2)

where f are various combinations of II; and II,. For in-
stance, if we have a model with attachment or removal prob-
abilities of the form (k#/zp) then the problem lies with the
normalization as in general

kP (n(k,1))
A VALY
<n(k,t)zﬁ(t)> * 40) . (3)

In many practical cases the fluctuations are small and the
corrections to the mean-field results are often found to be
small. For this reason the equations can be a good approxi-
mation even if the number of vertices or edges fluctuate pro-
vided their average values are constant and the variations are
small.

However, there are two special cases where equality holds
in Eq. (3) implying that the mean-field approximation is ex-
act, namely when B=0 or 1. Only in these cases are the
normalizations of probabilities constants of the motion, N
and E, respectively. The most general choice for II; and I,
satisfying these criteria is therefore

k 1 k
HR=Ea HA=pr]T]+ppE’ pp+pr=1 (EEkZO)
4)

This form for IT, means that an edge can be reattached in
two ways. With probability p,, preferential attachment is
used and the artifacts are chosen with a likelihood propor-
tional to their degree. Alternatively with probability p, a ran-
dom [43] artifact is chosen. Choosing a random edge for
rewiring corresponds to the use of “preferential removal”
alone.

There are other good reasons for choosing these forms for
the probability apart from the fact the master equation is then
exact. Mathematically, these simple forms enable us to find a
complete nonequilibrium solution. In terms of practical ap-
plications, one may understand these special forms as emerg-
ing naturally from a random walk process [36,44]. We will
also note the scaling properties of their solutions in Sec. VIIL.
We will limit our analysis to the case (4) which means we
will present exact results for the ensemble average of various
quantities at any time and for any values of our parameters.

III. THE GENERATING FUNCTION

A useful way to investigate the degree distribution n(k,r)
is to encode it with a generating function G(z,1),
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E

G(z,0) = >, Zn(k,1). (5)

k=0

Below we will exploit the fact that G is always a polynomial

in z of order no greater than E. The mean-field equations (1)

can then be rewritten as a differential equation for the gen-
erating function,

b(l1+a-c)

(I-2)

=z2(1-2)G"(z,0) +[c — (a+ b+ 1)z]G'(z,1) — abG(z,1),

(6)

where the differentials G” and G’ are with double and single

derivatives with respect to z. The constants a, b, and ¢ are
given by

[G(z,t+ 1) = G(z,1)]

a="2(k), £
Pp
The equation for n(k,z) is linear—it is completely equiva-
lent to a Markov process in an E+ 1-dimensional space in
which the vector [n(0,7),n(1,1),...,n(E,f)] lives [38].
Therefore we can define E+1 eigenvectors a)(’")(k) associ-
ated with an eigenvalue \,, (m=0,1,2,...,E), which we or-
der such that \,,=\,,,;. Furthermore, the properties of the
Markov process guarantee that 1=|\,,| with at least \y=1.
We can now break the generating function into E+1 com-
ponents with the time dependence factorized,

b=—E, c=1+23)- 7)
Pp

P

E E

G(z,0) = 2 cu(N)'G™(2),  G™(z) = X ZF™(k),
m=0 k=0

(8)

where the coefficients ¢,, depend on the initial conditions
n(k,t=0). Again the generating functions for the eigenvec-
tors, G"(z), are polynomials of degree no larger than E.
Substituting this form into Eq. (6) gives a time-independent
differential equation for G")(z), the generating function of
the mth eigenvector:

2(1-2)G™"(z) + [e=(a+b+ l)z]G(”’)/(z)

~|ab- %b(c —a-1)[G"™(z)=0. (9
This can be solved most easily by writing G as a polynomial
in (1-z). Having the correct form for the master equation
and therefore the correct behavior at the boundaries ensures
that this gives a finite order polynomial. These may be sum-
marized in terms of the hypergeometric function F'=,F, to
be [45]

G"™(z) = (1 = 2)"F(a +m,b +m;c;z) (10)

E—m

B " Fla+m+DI'(b+m+DI'(c)
=(1-2) % Ta+mTB+mTe+ i)

(11)

with corresponding eigenvalues,
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Pr

, 0=m=E. (12
E

p
)\m=1—m(m—1)E%—m

An expression for the entries of the eigenvectors o™ (k) may
be derived from the coefficients of z* in Eq. (11) which can
be given in terms of the hypergeometric function ;F,, though
it is not very illuminating and merely assists in explicit
evaluations:

T'(k+1) T(c+k) I'(a) I'(b)
IF'k+1-m)T(c+k-m)T'(a+m)'(b+m)
X 3F,(=m,a+k,b+k;
k+1—m,k+c—m;l—z)|z:0w(0>(k), (13)

0" (k)= (- 1)"

where

INa+k)T'(b+k) T'(c)
I'a) T®) T(c+k)
In the special case of p,=1, the degree distribution is that of

the Watts and Strogatz model [1] (see Sec. VI below). The
generating function then reduces to

o V(k) = (14)

G(’")(Z) — Z)m[(l _N—l) +N_1Z]E_m.

e — 1 —_

(1 _ N—I)E—m(
(15)

More usefully we note for later use that the eigenvalues

satisfy [46]

T=hg> N > Ny > Ay > ---)\E=l—7E2>O

O<p,=1, (16)
Pr 2p, 2p

N=1-F N=l-——-—2, 17

1 E 2 E E2 ( )

The first consequence of these solutions is that the system
evolves to a unique equilibrium solution given by [37]

G(z) = lim G(z,1) = cyF(a,b;c;z). (18)

t—

The time scale for the decay of each of the eigenfunctions is
given by

7,,=— 1/In(\,,). (19)

IV. THE DEGREE DISTRIBUTION

The degree distribution n(k,7) at any time is given as the
coefficients of z¥ in the expression for the generating func-
tion G(z,t) of Eq. (8) and this in turn depends on the initial
conditions. The equilibrium degree distribution derived from
G(z) of Eq. (18) which from Eq. (8) is based only on the
zeroth eigenfunction ® [the m=0 case of Eq. (11)]. In par-
ticular the k=0 case shows that c¢y=n(0)=lim,_n(k=0,?)
and so we have
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1 dG
n(k) = lim n(k,1) = — iZ)
11— k' dZ 7=0

B n(0) I'(a+k)I'(b+k) T(c)
"T(k+1) T(a@ T®») T(c+k)

(20)

The total number of artifacts is given simply by the generat-
ing function at z=1 so
N=¢,G(z=1)=n(0)F(a,b;c;1). (21)

This gives us the equilibrium artifact degree probability dis-
tribution function p(k)=n(k)/N as

F(k + &<k>> F(pg Py - k)

_ Pp
PO=A— ) rEsion 0 P
r(’ﬁE)r(m 1)
A= L (23)

ﬂ&w—wﬂﬂ&wﬁ{ﬁy
Pp Pp Pp

where we have chosen to write the expression in terms of I’
functions of positive arguments and in terms of the original
parameters. Two useful values are the degree probability dis-
tribution for zero degree and maximum degree k=FE. The
former provides a measure of the number of unused artifacts
and thus another measure of the uniformity of the system and
the latter will be discussed in detail below. These satisfy

simple formulas
E
rpee) -2
Dp Pp Py

p(0) = £ , (24)
(] e
Pp Pp  Pp
r(’ﬁE> F<E+ &<k>>
p(E) = —L2 Pe (25)

{5 e
Pp Pp

The results for p(0,7) are plotted against exemplary data in
Fig. 2.

A. Large degree equilibrium behavior

The solution for p(k) has two significant parts. The first k
dependent ratio of gamma functions in Eq. (22) for k> 1 and
p,=0 behaves as

F(k+ &<k>>
R, = — P L, k‘y{l + O(k" M)]
I'k+1) ’ ppk ’
y=1-Lry=1. (26)
Pp

For p,=0 or (k)=0 (which includes when N— o) this term
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FIG. 2. (Color online) Plots of p(0) and the fractional difference
between the simulation and mean-field results (dp(0)
=[Pexpt(0)/ Pineor(0)]—1) against the number of rewirings #; for N
=E=100 and p,=0.1 (crosses), p,=0.04 (circles), p,=0.02 (stars),
and p,=0.01 (squares). Simulations started with n(k=1)=E and
zero otherwise. Averaged over 10° runs. The solid lines are the
results from the mean-field calculations.

gives us an exact inverse k power law for all degrees k from
this term. Another special case corresponds to an attachment
probability of I1,cc(k+1) which is often found in the litera-
ture, for instance, [7,10,11]. This ratio R, is then exactly one
for all k so y=0. In general the power is usually close but
always less than one.

However, the (1-1I14) and (1-1Ig) terms in Eq. (1) have
led to the second k-dependent ratio of gamma functions in
Eq. (22). If E>>k this gives an exponential cutoff

F(E Ly —k)
Pp Pp
I'NE+1-k)

o exp{- {k}[l + 0(%,%)] )

27

R2=

{=-In(p,) (28)

=~p, ifp, <1, (k)<E. (29)
Within these approximations, this may be expressed in an

equivalent manner which is sometimes seen in the literature
(e.g., [23,24,28])
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E p,
(e
Ry=—Eo_Lo x(1—5>ﬂ[1+0<£>}

I'E+1-k) E E
(30)
P L)1

While not strictly valid at k= FE this second form indicates

that there is a change of behavior for large degree if £<0. In
such a case the numerator of this second k-dependent ratio of
gamma functions becomes very large for k=F and we see

directly that this happens if p,<p;, where R,=1 ({=0) at
Dy
1

Py =i

é[l +O((kE™)]. (32)
At p,=py we are closest to a pure power law with a power
¥=v4=1-(2N)~". For the special case where N— so (k)
—0 we get a perfect inverse power law at p,=(1+E)~..

As p, drops below this critical value, a spike emerges at
k=E from this second k-dependent ratio R, which comes to
dominate the degree distribution at p,— 0. The point where
the distribution has become flat at the upper boundary, so
n(E)=n(E-1), defines an alternative critical random attach-
ment probability p- at

3 E-1 (33
P B =) 1= (k) )
Ep*zl+@. (34)

Either way when p,=<1/E the degree distribution will show
a spike at k=E.

Overall we see two distinct types of distribution. For large
random attachment rates, Ep,=1, we get a simple inverse
power with an exponential cutoff

1
n(k) o (k)" exp{- Ck},  p, = I (35)

This behavior is often noted in the literature
[5-7,17,18,23,24,27] and the formulas given there for the

power y and cutoff  or  are consistent with the exact for-
mulas given here given the various approximations used
elsewhere. Note that in any one practical example it will be
impossible to distinguish the power y derived from the data
from a value of one. This is because to have a reasonable
section of power law behavior we require 1< { but this im-
plies that p, is small and so (y—1)< (k). The power drifts
away from one as we raise the random attachment rate p,
towards one but only at the expense of the exponential re-
gime starting at a lower and lower degree. Only when the
power is very close to one can we get enough of a power law
to be significant.

However, as p, is lowered towards zero we get a change
of behavior in the exponential tail around p,.E=1. First we
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find that the exponential cutoff {~' moves to larger and larger
values, eventually becoming bigger than E. For p, slightly
below py, that is for p,> p- ~E~! the tail starts to rise. For
p.E<1, ie., if there has been no random artifact chosen
after most edges have been rewired once, then we will al-
most certainly find one artifact linked to most of the indi-
viduals, n(E)=1.

This behavior for Ep,< 1 has been noted in some of the
literature where it is known as condensation [12,14—18] or,
in the older population genetics literature, it is called fixation.
It mirrors similar behavior known for growing networks
when nonlinear attachment probabilities or vertex fitness are
used, for example, see [33,47].

B. Limiting values of p, in equilibrium

The p,=0 limit offers some simplifications as well as be-
ing the only value in the condensation phase. The condensa-
tion is clear from the expression for p(k) of Eq. (22) as the
denominator is infinite if (p,/p,)E(1 —-N"1=0, i.e., either we
have the trivial example of one artifact N=1 or we are in the
pure preferential attachment limit p,=1,p,=0. For the latter
p(k) is therefore zero for all values of k except k=0 or k
=F where the infinity is canceled by the same term in the
numerator. For instance, we find that [48] for small p, the
equilibrium distribution has the form

p(0) = (1 - ]%){1 - PAOIE) = (DT} + OL(p,)*],
(36)

(k)E = (k)

o>, 0<k<E, (37
PE—b T (P;) (37)

p(k) =

p(E) = ]%{1 = pE = UNUE) = (D]} + OL(p))],
(38)

so only at p,=0 do we get condensation for any E. This
represents a true phase transition in the large system (FE
— oo, thermodynamic) limit between the gamma distribution
(35) for p,>0 and the condensation p(k)= 6 ¢ at p,=0.

At the other extreme, we have the limit of pure random
artifact selection p,=1. In this limit the model captures ex-
actly the degree distribution of the original Watts and Stro-
gatz model [1]. In this case for any E and (k) the solution for
p(k) [Eq. (22)] reduces to a binomial distribution with a
probability (1/N) of any one edge connecting to a given
artifact vertex, i.e., we have the expected Erdds-Réyni ran-
dom graph in the long time limit.

C. Time dependence of the degree distribution

So far we have looked at the equilibrium behavior but we
have a complete solution for the degree distribution for all
times and any value of the parameters through our eigen-
functions (13) and eigenvalues (12). Alternatively for small
values of E it may be more convenient to cast this as a matrix
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FIG. 3. (Color online) Plots of p(k) and the fractional deviation
[dp=pexpi(k 1)/ Pireor(k, 1) = 1] between the simulation (data points)
and exact mean-field results (lines); for E=N=100 and p,=0.1 after
evolving for t= 7, (crosses), t=2, (circles), t= 37, (stars), and to
equilibrium (squares). The solid lines are the relevant mean-field
results plotted for the same times. Started with n(k=1)=E and zero
otherwise and simulation results averaged over 10° runs.

problem [38]. We have used the latter to predict the degree
distribution for any time for a range of p, values on either
side of and approximately equal to the critical value p« in
Figs. 3-5. These (and other figures below) show that the
degree distribution evolves on time scales 7, set by eigen-
value number two whatever p, we use (why it is not 7 is
explained below). Again the exact mean-field results fit the
averaged values from a simulation extremely well.

V. THE MOMENTS OF THE DEGREE DISTRIBUTION

The properties of the hypergeometric function mean it is
easy to calculate derivatives of the generating function at z
=1 at any time as we have

w_ d'G"(2)

8n T T » (39)
m_ L+1) Tla+n) I'(b+n)
=(-1)"gy
IF'h+1-m)T(a+m)I'(b+m)
I'c-n-m-a-b) T(c-a) I'(c-b)
I'(c—a-b) I'c—a-m)T(c—b-m)
(m=n) (40)
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FIG. 4. (Color online) Plots of p(k) and the fractional deviation
[dp=Pexpi(k )/ Piheor(k,1)—1] between the simulation (data points)
and exact mean-field results (lines); for E=N=100 and p,=0.01
after evolving for 7=~ 7, (crosses), =27, (circles), t=37, (stars),
and to equilibrium (squares). The solid lines are the relevant mean-
field results plotted for the same times. Started with n(k=1)=FE and
zero otherwise and simulation results averaged over 107 runs.

with gflm)=0 if m>n. This then suggests that rather than
work in terms of the higher moments (k"), we use the prob-
abilities F, where [49]

MNE+1-n) d"G(z,1)
NE+1) dz"

F,(1) =

z=1

o k(=1  (k=n+1)
=;§()E(E—1) (E_n+1)n(k,t). (41)

The function F, is the probability that if we choose n distinct
edges, they will all share the same artifact. The rth moment
(k") can be calculated if given all the F, for n=<r. The F,
achieve their largest value only when we have a condensa-
tion, p(k)=(N—1) & o+ & g, where F,=1 for all n=2. That is
we have a perfectly homogeneous population (all the indi-
viduals are connected to the same artifact). The lowest pos-
sible value of F,, depends on the other parameters. If we have
E=N then when all artifacts have at most one edge attached
then F,,=0 for all n, as we can see in Fig. 6 at the initial time.
The evolution causes a drift towards a more heterogeneous
distribution. The same figure also shows how the exact
mean-field results match results from simulations extremely
well. Mathematically it is clear from the result (11) that the
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FIG. 5. (Color online) Plots of p(k) and the fractional deviation
[dp=pexpi(k, D)/ Pheor(k, 1) = 1] between the simulation (data points)
and exact mean-field results (lines); for E=N=100 and p,=0.001
after evolving for 7= 7, (crosses), =27, (circles), t=37, (stars),
and to equilibrium (squares). The solid lines are the relevant mean-
field results plotted for the same times. Started with n(k=1)=FE and
zero otherwise and simulation results averaged over 10° runs.

F, only has contributions from the first n+1 eigenfunctions,
i.e., from G™ for m=n.
In equilibrium only eigenfunction zero contributes and we

have a simple result
r(’ﬁ<k> ¥ n)F(&E)
lim F,(f) = F, = N—L2 Py

o r(’ﬁ<k>)r<’ﬁfs+ n)
Py Py

A. Normalization N

(42)

The zeroth moment sets the overall normalization of the
degree distribution n(k,7). This is nothing but the total num-
ber of artifact nodes N and for any time 7 we find it is equal
to

E

N=G(z=1,0)= 2, c,(\,)'g" = coF(a,bsc;1).  (43)
m=0

This result is time independent because it comes only from
the zeroth eigenvector, the only time independent part of the
solution. Thus our solution is consistent with a key property
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FIG. 6. (Color online) Plots of various F,(t) for numerical simu-
lations (points) with their exact mean-field predictions (lines)
against the number of rewirings . From top to bottom we have
F,(t) (crosses), F5(t) (circles), and F,(t) (stars). The second plot
shows the fractional difference between numerical experiments and
theoretical results dF,=(F, expt/ Fyheor)—1; for E=N=100, p,
=0.01 and data points are the average of 10° runs of a simulation.

in this model, namely the constant number of artifacts N.
This then fixes the amplitude of the zeroth eigenfunction in
Eq. (8) to be

N
0" (44)
go

B. Average degree

The first derivative of the generating function gives the
number of edges

d
E= %G(Z’t) (45)

z=1

C
—Ecm(x )'g\™ = °)+;‘(x1)’g§". (46)

Only eigenfunctions zero and one contribute but the latter
leads to time dependence. On the other hand we also have a
fixed number of edges in this model as it is one of our input
parameters. The only solution is therefore ¢;=0. Thus for
any physical problem there is no contribution from eigen-
function number one.
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This equation then appears to overconstrain our solution
as ¢ is already known from the normalization (44) and all
other quantities are fixed. However, we find that using stan-
dard properties of hypergeometric functions and the normal-
ization from Eq. (43) that the solution already satisfies Eq.
(45) and again everything is consistent.

C. Homogeneity measures F,, and initial conditions

The next derivative of the generating function contains
the second moment but it is preferable to work with our
related function F,—the probability that two distinct edges
chosen at random are connected to the same artifact. Similar
measures of the homogeneity of the artifact choices have
been used before such as F=((k*/E?)) but this is easily cal-
culated from our F, measure. We find that

Fy(1) —E E(E_ 1) (k1) (47)

:EGCTﬂ%g '+ er(N)'e]. (48)

Now there is time dependence but only coming from eigen-
function number two. This function is readily evaluated us-
ing Eq. (40), the coefficient ¢, fixed upon specification of the
initial conditions. This formula fits the results extremely well
as Fig. 7 shows.

One of the advantages of the F, measures is that they
provide a systematic and practical way of fixing the ampli-
tudes of each eigenfunction, the ¢,, coefficients of Eq. (8),
from the initial conditions. From the definition (41) we can
express F, in terms of the nth derivatives of the generating
functions associated with the mth eigenfunction evaluated at

z=1, i.e., g;m) of Eq. (39).

M (m) _ :
T(E+1) ,,,20 ngn" = Fit=0). (49)

However, only the first n eigenfunctions contribute so we can
use an iterative scheme to find the first few coefficients
quickly. These are sufficient to provide an excellent approxi-
mation for the degree distribution for most times.

For example, consider the case of uniform initial condi-
tions, such that E=N and each artifact is connected to at
most one edge, then we have that F,=0 for n=2. This cor-
responds to the choice of initial conditions used in obtaining
the numerical results in Figs. 2-5. So for these initial condi-
tions the following condition holds:

Ecmgi’”— 0, n=2. (50)

We have already seen that the N parameter fixes ¢ in Eq.
(44) while the first moment or equivalently E gives ¢;=0. So
starting with n=2 we have
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FIG. 7. (Color online) Plots of the homogeneity factor F,(¢) and
the fractional difference between the simulation (data points) and
exact mean-field results (lines) against the number of rewirings z;
for N=E=100 and different p,. From bottom to top: p,=0.1
(crosses), p,=0.04 (circles), p,=0.02 (stars), and p,=0.01 (squares).
The second plot shows the fractional difference between numerical
experiments and theoretical results dF2=(F2,exp[/F2,the‘,,)—1. The
initial configuration is n(k=1)=F and zero otherwise. Simulation
data is averaged over 10* runs. The results are in good agreement
with the analytic result equation (52).

(0)
8
Cr=—2Cyp ?2) (51)
82

The exact time dependence of the second homogeneity func-
tion is

Fy(t) = (1 = \)Fy()

~ (1= ay Lt PAR (52)
pp+rE
Comparisons to numerical results are plotted in Fig. 7.
Another particularly convenient choice of initial condi-
tions is to attach each individual vertex to the same artifact
vertex so that n(k=E)=1, n(k=0)=N-1, and zero otherwise.
Now F,(0)=1 and the condition (49) becomes

” [(E+1)

o 2T 53
E)Cmg" I'E+1-n) (53)

Note, we have put no restriction on the total number of in-
dividual vertices, E. For the simplest case n=2 we are led to
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FIG. 8. (Color online) Plots of the evolution of p(0), p(50), and
p(100) against the number of rewirings ¢ for E=N=100, p,=0.01
compared with the relevant mean-field results. The solid lines rep-
resent the exact mean-field solution, while the numbered dashed
lines indicate the successive improvements obtained using contri-
butions from A, (2) up to N5 (5). Simulations started with n(k=1)
=E and zero otherwise. Averaged over 10° runs.

another simple formula,

Fy(h)=(1 —AQ)(M—1>+1. (54)
Ppt+pE

While the exact degree distribution requires knowledge of
all the eigenfunctions, the low n eigenfunctions still provide
a suitable approximation for most times. Figures 8 and 9
illustrate this, showing the contributions to the degree distri-
bution from successive eigenvectors for the two initial con-
ditions discussed above.
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FIG. 9. (Color online) Plots of the evolution of p(0), p(50), and
p(100) against the number of rewirings ¢ for E=N=100, p,=0.01
compared with the relevant mean-field results. The solid lines rep-
resent the exact mean-field solution, while the numbered dashed
lines indicate the successive improvements obtained using contri-
butions from X\, (2) up to A5 (5). Simulations started with the alter-
nate initial condition n(k=E)=1. Averaged over 10° runs.

VI. DISCUSSION OF OTHER MODELS

The bipartite network of Fig. 1 represents relationships at
the core of many models in the literature, some of which are
not usually expressed in terms of networks. While the mod-
els considered elsewhere often have additional elements
compared with our simple model of Sec. II, those models
often contain special cases where the degree distributions for
any time will be given by our exact result. The aim of this
section is to indicate the relationship between our model and
those found elsewhere. Only some of these connections have
been made before and then only in some of the literature. We
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will start by considering some generalizations of our simple
model as this will then help us to make comparisons with
previous work.

A. Generalizations of our bipartite model

Many related models work in continuous time so that the
number of rewiring events which have occurred corresponds
to our discrete time variable. However, it is easy to recast our
simple model as a continuous time process so that n(k,t
+1)—n(k,t) on the left-hand side of our master equation (1)
becomes dn(k,t)/dt with the Il and 11, being interpreted as
rates. This case is just as easy to solve as we replace the form
used before for our degree distribution and generating func-
tion (5) by

E
l’l(k, t) = 2 me(m)(k)eXP{_ Xm[}7 Xm =1- Am (55)

m=0
The eigenfunctions (k) and the associated generating

functions G are exactly as before, the new eigenvalues \,,
have a simple relationship to our original \,, and the form of
the time dependence is altered. Thus our exact solutions may
be applied to discrete or continuous time.

Another obvious generalization of our model is to alter
the form of the attachment and removal probabilities 1 and
I1, [Eq. (4)]. Suppose

k 1-6
(k)= g, + qﬁ (56)
k 1-9 1
HA(k):Pp_+P M*‘P 0 (57)

E " N, N

with ¢,+¢,=1 and p,+p,+p,=1. We have added an extra
process to our model where with probability p, (¢,) we can
attach (remove) an edge from a random artifact chosen uni-
formly from those which have at least one edge. The number
of such active artifacts, those where k>0, is denoted N,(z)
and this is time-dependent. However, the master equation (1)
will no longer be exact because N, varies from configuration
to configuration so averages of ratios of k"n(k) and N, will
not factorize into the ratio of their averages (2). The time
dependence of N,(f) also makes the nonequilibrium solutions
of the master equation hard to find though the equilibrium
solution can be found as before [37]. For instance, the slope
of the power law section in the noncondensed phase is now

y=1-<’ﬁ+’ﬁ-@)<k> (58)
Pp Pp 4

and it can now be greater than one. In terms of the condensed
phase, this now occurs when p,> g, which means that there
is now a range of parameter values which lead to this phase
for large networks.

Another obvious generalization is to have terms in Il or
I, proportional to general powers of the degree (kP/ zp) or
powers of general functions (a+bk)?. As noted in Sec. II this
means that the master equation (1) is then only an approxi-
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mation though in many cases it will be a good one.

An important aspect of our model is that we have events
where an edge is rewired back to the same artifact so that the
configuration does not change. We had to include the (1
—IT) factors to account for this correctly. If we wish we can
exclude these events which correspond to choosing an at-
tachment probability of the form

1 ks - -
I,4(d,a) = pr(N—l) +ppE—kd (1=840)s Pp+pr=1,

(59)

where we are removing an edge from the artifact labeled d
(the departure artifact) and adding it to an artifact labeled a
(the arrival artifact). The (1-1II) factors in the master equa-
tion (1) are now always one and can be dropped, giving the
master equation the form often seen in the literature (e.g., in
[3.5-9.11]). However, the preferential attachment term p), of
the attachment probability I, now has a configuration de-
pendent normalization. The mean-field master equation is
now an approximation for all p,>0 and it is hard to solve it
for arbitrary times. In many cases the fluctuations will be
small and the mean field will be a good approximation. Fur-
ther if the number of edges attached to any one artifact is
small (tends to zero in the large E limit) then the difference
between our model and one excluding a=d events will be
small [3]. Unfortunately, this will not be true in the interest-
ing case where we have a condensation since for some arti-
fact vertices k,/E will be significant, finite even in the large
E limit. We would then expect differences between processes
based on Egs. (4) and (59).

Ultimately we could make the attachment or removal
rates depend on the individual nature of each vertex, e.g.,
make the probabilities p, and p, vary with artifact vertices.
This could mimic “fitness” where some artifacts are intrinsi-
cally more likely to attract edges.

One realistic way that artifact fitness could emerge is
through the addition of an artifact graph. That is we could
add a second network which connects artifacts to artifacts
and this could be used in choosing how the bipartite graph is
rewired. For instance, suppose we have chosen the edge we
are going to rewire so that we know the departure artifact.
We could choose the arrival artifact by making a random
walk on the artifact graph starting from the departure artifact
[36,44]. In this way the artifacts with a high degree in the
artifact graph would be preferred (even for a walk of one
step) and a natural fitness assignment for artifacts has
emerged. Alternatively, we could view this artifact graph as a
way of encoding some distance metric on the artifact space.
That is when choosing a random artifact, a p, event, it may
be that a small variation in the artifact, as defined by some
metric, is more likely than a large one. Our simple model is
equivalent to having a complete graph with tadpoles [50] for
the artifact graph (the adjacency matrix is one for all entries)
which we use for the random choice (p,) events. The varia-
tion mentioned above, where reconnection to the same arti-
fact is excluded, corresponds to a complete artifact graph
with no tadpoles.
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FIG. 10. (Color online) How the rewiring of the bipartite graph
represents the rewiring of an undirected unipartite graph. In this
example individual vertices numbers (2i) and (2i—1) are paired in
the bipartite graph to give the edge labeled (2i—1,2i) in the equiva-
lent undirected graph. The rewiring of the undirected graph de-
picted in this figure is equivalent to that shown for the bipartite
graph rewiring of Fig. 1. This is the projection used by Molloy and
Reed [53].

At the moment, our preferential attachment process, Pps
has been put in by hand. However, this can emerge naturally
if we add an individual graph, one which just connects the
individual vertices. Suppose we have chosen the individual
whose edge is to be rewired. We now make a random walk
on the individual graph and arrive at an individual vertex
which is connected to what is now taken to be the arrival
artifact for the rewiring process. Even a short walk of this
type produces good approximations to preferential attach-
ment processes [36,44,51,52]. The preferential attachment
events in our simple model are equivalent to doing a random
walk on an individual graph which is a complete graph with
tadpoles.

B. Relationship to models in the literature

The rewiring of unipartite networks has been studied in its
own right [1-7,10,11] but all of these examples contain, in
some sense, our bipartite graph. A projection of our bipartite
graph gives a unipartite graph, made from just the artifact
vertices. One way to achieve this example is to pair the in-
dividual vertices [say individuals numbered (2i—1) with
(2i)] and to consider the two edges of these individual ver-
tices as the two ends (the stubs) of a single edge in the new
undirected graph. Thus the process our simple model illus-
trated in Fig. 1 represents a rewiring process in some undi-
rected graph as shown in Fig. 10. In this way, or by consid-
ering the problem directly, we see that the mean-field
equations (1) are the same and we need only alter the nor-
malizations in the probabilities (4).

Note that the degree distribution of the projected undi-
rected graph at any one time is independent of how we pair
off individual vertices in the bipartite graph. Thus the degree
distributions of many different unipartite networks is repre-
sented by the same bipartite graph. Indeed this is the same
projection used by Molloy and Reed to construct general
random graphs, that is graphs of a given degree distribution
but otherwise arbitrary [53].

There are several expressions for global properties of
large generalized random graphs which depend on the ratio
of the second and first moments through a parameter z
[53-56]
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2
Z(1) = &) -

® L=(E-1)F,(1). (60)
Thus for large general random graphs being rewired using
any mixture of random vertex and preferential attachment,
we can give these global properties at any time. For instance,
the mean intervertex distance € scales as (In(N)/In[z(z)
+const]) so we see from Eq. (52) that for large £ we only
avoid ¢ scaling as In(N) if p.E~O(1).

Similarly a GCC (giant connected component) is present
in this unipartite projection when z> 1. We see that this will
always appear if (k)>1 or, if (k)<<1, it appears only if p,
<(2—(k))~". Suppose we start from the most disconnected
example where F,(r=0)=0 (so (k)=1). Using Eq. (52) we
can find the time at which the GCC first appears. If p.E
~O(1), which includes the condensate region, we find that
the GCC appears at t=E/2. This is much quicker than the
approach to the equilibrium configuration which happens on
a time scale 7,~ O(E?). If p, is raised from O(E™") towards
the critical value for the existence of a GCC, (2—{k))~!, the
time at which the GCC appears increases, reaching infinity at
the critical value of p,.

A different example of this projection is when our initial
bipartite graph has each artifact connected to m individuals
[n(k)=N&,,]. The unipartite graph projection is then a ran-
domized version of the graphs used by Watts and Strogatz
[1]. From this initial condition and setting p,=1 we therefore
have the exact solution for the degree distribution at any time
in the Watts and Strogatz model. The pairwise correlation of
individual vertices is only required if we want to know about
other aspects of the Watts and Strogatz networks, such as the
network distance and clustering coefficients which were the
focus of [1]. We can, however, calculate such quantities at
any time in the randomized graph which provides a useful
comparison.

It is straightforward to adapt this projection so that we get
a directed graph. For instance, the direction of an edge in the
projected unipartite graph could flow from the artifact con-
nected to individual (2i—1) to the artifact connected to indi-
vidual (2i). A simple modification of the master equation (1)
is needed to keep track of the in- and out-degree if we choose
to make these edges directional.

One can also think of other types of projection onto uni-
partite graphs. Suppose one fuses each individual vertex i
with an artifact vertex which is not necessarily the artifact
connected to that individual by the individual’s edge in the
bipartite graph. The individual-artifact edges of the bipartite
graph now represent edges between the fused vertices of this
projected unipartite graph. There is a natural direction asso-
ciated to these unipartite edges coming from the individual-
artifact direction of the bipartite graph, and this can be main-
tained or ignored as needed. A simple example of this
projection is where the numbers of individual and artifact
vertices are the same and we fuse each artifact vertex with
one individual vertex. If we let the edges of the bipartite
graph represent edges from the individual to an artifact in the
unipartite graph, then the unipartite graph vertices have out-
degree equal to one and this is one way of representing the
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N Vertices and Edges
| N

FIG. 11. (Color online) Another type of projection from our
bipartite to a unipartite network. Each individual vertex is fused
with one of the N artifact vertices to produce a unipartite graph with
N vertices. The edges of the unipartite graph are naturally direc-
tional coming from the vertex associated with the old individual
vertex of the bipartite graph and going to the old artifact vertex. In
the simplest case we have the same number of artifacts £ as indi-
viduals N and then we fuse artifact A with individual 1 to give a
unipartite vertex labeled Al, etc. This produces a network of the
type used in [5]. The figure shown here is this simple projection of
the bipartite graph and rewiring event of Fig. 1.

degree distribution of the graphs of [5] and as illustrated in
Fig. 11. Our master equation (1) is then the exact mean-field
description for the in-degree in this case.

We will now turn to problems where there is no explicit
reference to a network in the standard exposition but which
can still be related to our model. In such cases there is an
implicit graph in the problem which one may define to make
contact with our realization, but this network may not be
relevant in these other studies.

The work on cultural transmission [20-25] is usually de-
veloped without reference to any network. The names for our
vertices come from this case. In this context individuals are
deemed to be choosing some artifact of no particular value
(pottery designs, pedigree dog breeds, or baby names, for
example) by copying the choice of another individual—
preferential attachment. Sometimes though one can expect
innovations to be made when a completely new artifact is
introduced. This translates to a random attachment event in
the N—oo limit. While this work does not generally use a
network picture, it does translate directly into our network
model (e.g., see [21]). Here the edges in our network real-
ization represent the artifacts chosen by each individual. In
cultural transmission problems, samples of these distribu-
tions are often available, from records of births, pedigree dog
registrations, or reports from archaeological excavations
[57].

It is relatively easy to see how the same model may be
used for family names rather than the personal names of
[22]. In this case the partners who change their family name
are represented by the individual vertices, the family names
are the artifact vertices and the edges represent the partners
who keep their family name. This is then the constant popu-
lation limit of the models in [26].

This family name example shows that this model may be
linked to inheritance processes. As noted elsewhere [21-24]
the oldest examples come from a simple model for the diver-
sity of genes in a constant population due to Kimura and
Crow [27,28]. In the case of a haploid cell (viruses, bacteria,
and blue-green algae provide examples) the artifacts are al-
leles of a single gene carried by each individual. The prefer-
ential attachment events correspond to inheritance of genes.
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FIG. 12. (Color online) Interpretation of the example shown in
Fig. 1 as a haploid gene inheritance and mutation model. Each
individual carries one copy of a gene and each different version of
the gene, an allele, is represented by an artifact vertex. The edges
indicate the allele present in each individual. Note this also serves
as a model of family names for a constant population if one partner
inherits the family name of the other partner. In this case the alleles
(artifacts) are the family names, the edges are the males, and the
genes (individuals) are the females.

This produces a drift towards homogeneity and, if un-
checked, a condensation or fixation in the frequency of alle-
les in the population. The random attachment process is mu-
tation in this context.

In general a fitness is assigned to each gene representing
the chance of survival and the successful birth rate associated
with having that gene. There may also be different mutation
rates associated with each gene. However, in the simplest
models such factors are ignored. Translating the haploid gene
model for a constant population into the language of our
network rewiring model is then simple. The organisms are
the individuals and we consider one gene carried by each
individual. Each different allele of this gene is a distinct
artifact vertex and so each edge records the allele carried by
an individual. The rewiring example of Fig. 1 is translated
into a haploid model as shown in Fig. 12.

In a diploid cell there are two copies of a gene and most
cells of most higher organisms are of this type. Ignoring
fitness, etc. we can see that we can represent the allele fre-
quencies of one gene in a constant population of diploid cells
with the usual rewiring model as shown in Fig. 13.

There is also a close relationship between our network
model and various models of statistical physics, a connection
already noted in some places [10,18]. In the original urn
model of the Ehrenfests [58] one has E balls placed in two
urns. At random times given by a Poisson process, a ball
chosen at random is moved from one urn to another. This
corresponds to a continuous time version of our model with
the artifacts being the urns so N=2 and the individuals rep-
resent the balls. Choosing p,=1 in our model reproduces the
behavior of the original urn model.

There is one subtlety in that in the original urn model the
ball is never put back into the urn it was drawn from. These
events are allowed in our model and are precisely the ones
which require the factors of (1—1II) in our master equation
(1) as they leave the configuration unchanged. The difference
between the original urn model and our model for N=2, p,
=1 and continuous time is just a matter of a factor of 2 in the
rates.

056101-12



EXACT SOLUTION FOR THE TIME EVOLUTION OF...
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FIG. 13. (Color online) Interpretation of our model as a diploid
gene inheritance and mutation model. Organism (3’,4") dies and is
replaced by (3,4) whose parents are the organisms (1,2) and (5,6).
From the (1,2) parent it inherits copy number 2 of the gene which is
allele A. However, the gene it inherits from the (5,6) parent mutates
to allele N.

However, generic urn models are often encountered in
some obvious variations of the Ehrenfest version, in particu-
lar with N urns and with different forms for the rate at which
balls are moved and where they are then placed [8—11].
Some of these variations of the original urn model are
equivalent to other models such as the backgammon or balls-
in-box models used for glasses [13,14], simplicial gravity
[15], and wealth distributions [ 16]. The zero range processes
[17-19] can also be interpreted as urn models, with the “mis-
anthrope” process on a fully connected geometry being clos-
est to our basic model.

Using the terminology of the urn model review [9], the
“geometry” of the urn model refers to which urns are
connected—an artifact network in our model as discussed in
Sec. VI A. The simplest “mean-field” geometry, i.e., a com-
plete graph for the artifact network, is what we assume in our
simple model. On the other hand the basic zero-range pro-
cess models [17,18] use a one-dimensional ring. If we allow
processes where the ball is placed back into the urn it came
from, then the rate at which a ball moves is given by u(d,a)
per ball where d is the departure urn and a the arrival urn.
Usually the rates used factorize into two terms, one depend-
ing only on the number of balls in the departure urn k,; (num-
ber of edges, i.e., the artifact vertex degree) and the other on
the number of balls in the arrival urn k,. In our terminology
u(d,a)=I1g(ky)I14(k,). Then the three rules for ball selection
discussed in [8,9] correspond to our generalization (57) as
follows: Rule A (random ball to random urn, Ehrenfest class)
is our g,=1, p,=1; rule B (random urn to random urn, Mon-
key class) is our g,=1, p,=1; and rule C (random ball to
random ball) is our g,=1,p,=1.

However, we stress that to include processes where balls
are returned to the urn they were drawn from, the master
equation has to contain the factors (1-1II) while such terms
are normally absent in the evolution equations of literature
on urn and related models, e.g., in [8—10]. If we were to
exclude such events then our transition rates u(d,a) will not
factorize into departure and arrival dependent terms [59]. For
instance, in our language the factor normally associated with
the arrival vertex, our attachment probabilities 114, will have
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to depend on the departure urn as well as on the properties of
the arrival urn, and for us would take the form (59) while the
literature usually uses simple factorizable forms, e.g., [8—11].
As we noted in Sec. VI A this will be important when a
significant fraction of balls are in any one box, as is the case
with a condensate.

There is a way around this problem and that is to work
with our solution in continuous time (55) and then to rescale
our time ¢ back into the time ¢,,, of an urn model where one
cannot put the ball back into the urn it was drawn from.
From the number of these events allowed in our model but
excluded from an urn model we have for infinitesimal time
steps

k2
dt—dturnz[&+£f’<—]dz, (61)
N EK)

where the second moment (k%) is easily derived from F(¢) of
Eq. (48).

Finally we note that many models in sociophysics may be
cast as generalizations of our bipartite rewiring model. If we
add an individual graph then for a copying (preferential at-
tachment) event, an individual copies the artifact choice
made by one of its neighbors in the individual graph. When
p,=1 and N=2 this is the basic Voter model [29], as used,
for instance, for language evolution [31]. Our results are
equivalent to having an individual graph which is complete
with tadpoles [60]. Our time scale is (7,/E)=FE/2 which
agrees with the O(E) result quoted in [30]. However, our
result shows the effect of adding some randomness to such
Voter models on both the consensus and on the time scale to
reach equilibrium.

Our results may also be useful in other sociophysics mod-
els. In one variation of the minority game [32] individuals
choose the “best” strategy known to them, comparing their
own against all those used by their neighbors as defined by
an individual graph. Each artifact vertex in our model would
then represent a different strategy. In this case what is best is
continually changing as generally the more popular one strat-
egy becomes the less successful it will be. Thus statistically,
it is likely that the resulting instantaneous artifact degree
distribution n(k,r) will be indistinguishable from that ob-
tained by just copying the artifact of a random neighbor
which as a simple random walk is likely to lead to effective
preferential attachment. It is no surprise then that the long
time results for the popularity of strategies in [32] follows a
simple inverse power law with a large degree cutoff, the
form found in Eq. (35).

VII. SUMMARY AND CONCLUSIONS

The starting point of our work is the observation that the
usual mean-field master equations seen for network evolu-
tion are not suitable for general rewiring problems. One
needs to add the factors of (1-II) seen in Eq. (1) if the
degree distribution is to behave properly at the maximum
degree [37]. With these terms and the simplest case of linear
attachment-removal probabilities the exact solution for the
degree distribution at any time can be found for arbitrary
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values of the parameters, here expressed in terms of the gen-
erating function G(z,7) of Egs. (5), (8), and (11). This is
better than can be done for simple growing networks where
the exact equilibrium solution is known for simple attach-
ment probabilities but the finite size (finite time) system cor-
rections are only known asymptotically (e.g., see [33,34,36]).
Previous results for equivalent models give results that are
only approximations, often for infinitely large systems in
equilibrium though all are consistent with the results derived
here [61]. We have also compared our analytic results against
numerical simulation in several ways and seen that agree-
ment is excellent. We know of no other network model that
has the exact time dependent solution for arbitrary param-
eters and suggest that this model may prove to be as useful a
model as the Erdés-Réyni random graph has been.

In particular the equilibrium degree distribution of [37] is
found as the long time solution. It has two characteristic
regimes: if when all edges have been rewired once (on aver-
age) at least one rewiring was done randomly then a simple
inverse power law with exponential cutoff is obtained, oth-
erwise we have a regime with a condensate.

We have confirmed the slow approach to equilibrium and
the conjectured form for the second eigenvalue \; of [38].
However, here we have shown that the long time evolution is
governed not by the second largest eigenvalue but the third
largest, \y=1-(2p,/E)—(2p,/ E?) with associated time scale
7,=—1/In(\,).

We have also noted that this simple bipartite graph rewir-
ing model captures the degree distribution of many other
networks, with that of the original Watts and Strogatz model
[1] as one limit of our model. In particular we have the exact
degree distribution at any time and any parameter value for
the rewiring of a general random graph. From this we can
obtain various global properties analytically as a function of
time using various known formulas [53-56]. However, many
of the alternative realizations require no explicit network as
in the link to urn/backgammon/balls-in-boxes models and
zero range processes [ 10-19].

The model also has a wide range of practical applications.
As most practical systems can not grow indefinitely, this
fixed sized rewiring model will often be more appropriate
than a growing network model. The urn-type models have
been applied to glasses [13], simplicial gravity [15], and
wealth distributions [16]. Models for social science in both
modern and archaeological contexts [20-24] can be cast as
our model. The applications in these papers include baby
name frequencies [22], pedigree dog breed popularity [23],
and pottery styles [20,21]. Sociophysics models may also be
related to our work. The Voter model [29,30], as applied to
language evolution [31], and the choice of strategy in a mi-
nority game variant [32], may be linked to our bipartite
graph approach. Finally basic models of population genetics
[27,28] and more generally any process where inheritance is
important, such as with family names [26], can be encoded
by our network rewiring.

Many of the related examples in the literature also study
cases beyond our simple model, for example nonlinear at-
tachment probabilities I1,%k? for 8 e R, attachment prob-
abilities whose scale varies with the artifact (fitness), pure
artifact or pure individual graphs, and growing systems
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(dE/dt) #0. These can often be captured by extensions to
our basic model but the downside of this sophistication is
that the mean-field equations are then only approximations
whose exact algebraic solution is probably unobtainable in
any case. Rather the literature usually works in a large net-
work long time approximation, E>> 1, often in a particular
part of parameter space such as 1>>p,>E~! or p,=0. We
though have exploited the simplicity of our model in order to
obtain exact solutions for any time or parameter value.

At worst this simple bipartite model provides a useful null
model against which to test other hypotheses [25]. However,
we have also argued in Sec. VI A why copying may be a
more widespread method than the obvious cases involving
inheritance mechanisms.

Finally we note the scaling properties of the model. In
many practical examples the artifacts are really categories
imposed by investigators on a collection of objects. In almost
all cases, each object could be individually identified if one
wishes. Indeed the objects may be being chosen by individu-
als based on characteristics completely different from those
recorded by the researcher. No pedigree dog [23] is geneti-
cally pure, a personal [22] or family name [26] may come in
several close variations, and who assigns a particular style to
an archaeological pottery find [20,21]?

Consider an exemplary small study [62] where the shoes
of around 200 male physics students leaving a lecture were
photographed. Various researchers categorized them in com-
pletely different ways giving different degree distributions
from the same data. For instance, one could categorize each
shoe by color, material, and fastening method. Still what
constitutes say a “blue” shoe may be a context dependent
matter of physical and social perception so researchers and
wearers may not even agree how to classify a given shoe
under the one scheme.

So if such artifact popularity distributions are to have
much meaning they ought to be largely independent of this
categorization. Thus consider pairing the artifacts at random
and calculating the degree distribution for these pairs, n,(k),
even though the model continues to make its rewiring selec-
tions based on the original single artifact vertices. That is at
each event we choose to make a preferential (copying, inher-
itance) attachment or a random (innovation, mutation) at-
tachment to the artifact pairs with exactly the same probabil-
ity p, and p, Given our linear attachment-removal
probabilities the effective probability for attaching to a given
artifact pair is just the sum of the degrees of its constituent
artifacts, i.e., it is still proportional to the degree of the arti-
fact pair. On the other hand the probability we attach to a
given artifact chosen at random is halved but only because
the number of artifact pairs N, is just half the original num-
ber of artifacts, N— N,=N/2. With the number of edges E
unchanged, changing N to N, is the only change we need to
make in our equations. Vitally, the form for the attachment
and removal probabilities remains the same and thus the
form of the solutions is unchanged. We will get the same
qualitative behavior, a power law with an exponential cutoff.
In such cases the cutoff ¢ (28) remains unchanged and only
the slope v (26) changes in comparing n(k) to the pair degree
distribution n,(k). However, the slope is invariably indistin-
guishable from one in a practical data set or it will be un-
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measurable with a small cutoff {. Thus for a linear attach-
ment plus random attachment model, the distribution of
artifact choice is independent of how artifacts are classified
for all practical purposes.
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